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THE a-HULL - THE HULL WHERE FRACTALS LIVE
CALCULATING A HULL BOUNDED BY LOG SPIRALS TO SOLVE

THE INVERSE IFS-PROBLEM BY THE DETECTED ORBITS

ERWIN HOCEVAR
Technical University of Vienna, Institute of Automation 183/2

A-1040 Treitelstr. 3, Vienna, Austria
E-mail: hocevar@zdvaxa.arcs.ac.at

Global IFS seem to be suited best for compressed encoding of natural objects which are in most cases
self affme even if not always exactly. Since affine transformations - the IFS-Codes - resp. the union of
all their orbits generate an object (an IFS-Attractor), the detection of a non minimal set of these orbits
solves the inverse IFS-Problem by calculating a superset of IFS-Codes, which has to be minimized.
Here a method is presented how these orbits (in particular those on the object boundary) can be
calculated. Therefore a generalized convex hull - the r-Hull - is defined. This fractal hull is bounded
by log spirals, that curves formed by the orbits. It is shown that log spirals can be represented by a
continuos function of powers of affine maps and that by using this "spiral equivalent" the generating
transformations of the orbits by which an IFS-object is bound, can be calculated in the x/y-plane.
Further more this representation can be used for the classification of the detected orbits, necessary to
calculate the IFS-Codes of a minimal IFS from their generating transformations, subsequently.

1 Introduction

1.1 Problem Specification - Objects to be encoded

The idea is to globally encode' objects of an image appearing in the nature and therefore
often self similar to a high degree but difficult to encode or to compress by a
mathematical formula. This global IFS-Approach2 - representing an object by the union
of affine contractive transformed copies (subobjects generated by the IFS-Codes) of the
object itself - seems to be used best to solve the inverse (global) IFS-Problem.

Thus the Collage Theorem which can be used to generate whole objects of an image
is given: A set {oi: R1 -- R1 I oi affine, contraction} of complete Euclidean space (R2,d)
is an Iterated Function Systems (IFS) with contractivity factor s, for i e N, the distance
d, 0 < s < 1 and s.h(B, C) > h(W(B), W(C)), if for the Hutchinson operator Wa holds

W(A)= U Uoi (x) andA=W(A).
oi EW xEA

The compact set A is called an attractor of W.
The Collage Theorem (CT) for attractors close to given compact sets:

h(L, W(L)) 5 F => h(L, A) • 6/l _ s)

where h is called the HausdorffDistance

a W: '-,(R2) -> P(R2) with W(A) = {W(a) I aeA}, Ae!(R2) is a contractive map of (H(R2),h) the

space of nonempty compact subsets of R2 where h(C,B) = max{d(C,B), d(CA)} and C, BE4(R2).
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L c R2 is a given compact set of (R2,d) and s > 0. For 6 = 0 (L = A) the CT for exactly
self affine attractors is obtained. In principle the CT can be applied to any object if
sufficient many IFS-Codes ci are used. However, to compress an object the number of
parts ci (L) (the subobjects) have to be small for a small P.

For the discrete pixel space the discrete CT3 is defined as a set {tm: P2 -+P2 I Om
affine, contraction} of the pixel space (P2,d) - P = {0, ...,R-1 } c N - is a Discrete Iterated
Function Systems (DIFS) with contractivity factor s, for m E P, R2 the number of image
screen pixels, the block distance d, 0 _< s < I and s.h(B,C) > h(W(B), W(C)), if for the
Hutchinson operator W: 3(P 2 ) -> I(P 2 ) holds

W(A) = U Ua,(x) and A = W(A).
meP xeA

The set A is called an discrete attractor of W. The discrete attractor ACW(P2) is not
unique, but there always exist a unique maximal attractor AmaxE ;ePV) with A = W(A)
A c Amax, which contains all discrete attractors.

The Chaos Game generates an attractor A by the iterated random application of the
different om to one image point i.e., by the union of orbits formed by all combinations of
tOm- the basic principle of the presented solution.

In contrast to global IFS, an encoding based on Partitioned IFS (PIFS)4 divides the
image into larger and smaller segments (polygons). The smaller target segments are
interpreted as affine contractive copies of the larger ones and then the CT is applied.
Since only IFS-Properties of affine relationships constrained to the segment form can be
exploited, all of the many image parts are only approximated by an IFS-encoding.

1.2 The Solution - How to encode global IFS-Objects

Calculating boundaries of an object
In general the boundary of an object contains the most information how an object is built.
Points inside an object normally cannot be related, because they are difficult to
distinguish. The common method to determine the boundary of an object - especially if it
is defined in a discrete (pixel) space - is to form the hull of an object.

We first can try it by the convex hull IPA), which is defined as "Intersection of half
planes containing a point set (the attractor) A". It soon appears that a hull of such a kind
is not usable for IFS-Attractors, because only the boundary of convex objects - what an
IFS certainly is not - can be determined.

Second we can try a more general hull - the a-Hull 5 Wx - defined as follows:
The a-Hull I'a(A) (see Fig. 1) is defined as the intersection of all generalized disks B(c, r)
resp. B(c, -r) of non negative radius r = 1/a and the centre c containing the attractor A,
where B(c, -r) is the complement of the disk B(c,r).6

The boundary of an a-Hull is formed by a-Extremes (see Fig. 1):
A point s e A is termed a-Extreme (comer of *'a(A)) in A, if there exists a B(c, 1/'x)
such that s lies on its boundary and contains all other points of A.6

Now it is possible to analyse concave objects and even objects concave with different
curvature using different radii of the generalized disks. But we need a relationship of
boundary points (extremes) which provides more information about the object. Using the
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a-Hull we get only a relationship of points laying on the same edge of a disk of different
radius forming the a-Hull. But the boundary points of an IFS-Attractor do not lay on
circles. They form orbitsb in the discrete space which are given as subset of W÷ c for an
IFS W (as it is easily to observe in the application of the Chaos Game). These orbits lie
on logarithmic spirals1, what will be shown in this paper. So the best suited hull to
determine an IFS-Attractor seems to be the c-Hull which is bounded by log spirals and
will be detailly defined and described in the main part of this paper.

Calculating a minimal IFS
Once found the orbits on the boundaries of different a-Hulls they have to be classified to
calculate the IFS-Codes:

Classes Ci = {orbits which can be affinely mapped onto eachother} are formed.
The potential IFS-Codes mi are the generating transformations of the largest
orbitsd of each class.

Then the final IFS-Codes o)i are the generating transformations of the largest orbits
within each Ci which can be mapped onto eachother by (have an inter orbit
transformation in) {oi}+.
Thus the final and also minimal IFS can be calculated by the following iterative process

(a) which restrains the classes to those orbits which can be mapped onto each other
only by mi detected so far

=> more and more classes are generated (and the set {Mi} is increased)
(b) which enlarges the classes to those orbits which can now be mapped onto each

other only by mi detected so far
= fewer and fewer classes are generated (and the set {(i} is decreased)

This process is repeated until no more (in (a)) resp. no fewer (in (b)) classes are
generated. Then the generating transformations of the largest orbits of each remaining
class form a minimal set of the IFS-Codes of the object.

Since a a-Hull is only useful to find the orbits on the boundary of an object, orbits of
inner subobjects (having no boundary in common with the object) cannot be found in the
first step. But if you form the difference between the object Ao and the point set gener-
ated by the IFS-Codes in the first step one will get a difference object A1 in the second
step. Those affine transformations mapping boundary orbits (detected by different a-
Hulls) of the object A0 to those of the difference object A1 are the IFS-Codes for the inner
subobjects now lying outside. The second step has to be repeated for the object A, (i E N)
as long as the difference object Ai+ 1 is not empty. Adjusting the obtained results and
eliminating possible deviations by comparing the inverse IFS-mapping of the hull of
inner subobjects with the object hull, also the inverse IFS-Problem for overlapping
subobjects can be solved.

b An orbit 0 is a point sequence on = ý(W)(x) VneN where ¢(n) = H *, € affme and x e R2.
n

The point sequence (orbit) ý(fl(p) converges for a contractive affime maps ( to the fixed point f of4
C W= { fl on Ion e W u {(} and W+= W* \ {J} with W ={mi I mi affine} and s the Identity Map.

neN
d The largest orbits of a subobject p(A) (p e W u {s}) are those orbits 0 = {to ._on) with a
minimal contraction, where ý(n) (o0) e A for n Ž 0 and ý(") (o0 ) o A for n < 0 and ý E W+.
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2 Definition and Application of the ;-Hull

2.1 The a-Hull (fractal hull) in R x (p

SD (f,'r

x y-Extremes/

0Extremes of the
Convex Hull

G-ulo A)
a(-Hull of (A)

Figure 1. The convex Hull, the o- and a-Hull of an Object

We first introduce the notion of generalized spiral disks. Let D*(f, r) denote a spiral disk

defined by the point set U pi with fixed point (centre) f, the non negative radius r = RekP
i

where pi c R x T and d(f, pi) < r and 0 < p •!_ 2mic, m e N.

A generalized spiral disk

DYf, r) {D*(f,-r)c r<0 (1)

D*(f,r) rŽO0

where Xc is the complement of X.

Since D'(f, r) is not solely bounded by a log spiral (but also by a part of the qP = 0 axis)
a generalized spiral disc segment has to be constructed bounded only by equally curved
log spirals having the same fixed point.

Thus a generalized spiral disk segment is given by (Fig. 1):

D(f, r) = D'(f, RekP) r) D'(f, -Rek(n/4+(P)) r- D'(f, Rek(/2-0)) (2)

Note: For negative k one will get a spiral disc segment reflected by the (P = 0 axis!

Ca(S) is the set offixed points of spiral disc segments of radius 1/, that have S as subset

Cc(S) ={x E R x I S c D(x,'/a)} (3)

where X is the set closure of X.
Let X be an arbitrary (finite or connected set) in R x q then the intersection of all

generalized spiral disc segments with varying fixed point x e X and a fixed radius 1/,
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Rx(p X=O
is denoted by Ma(X)Y - D(x,'/u) X#O (4)

LxeX
where 0 is the empty set.

The c-Hull of S is the intersection of all generalized spiral disk segments of radius 1/,
that contain all points of S. Thus the c-Hull (fractal hull) is given by

14S - ("() (5)

A point s e S is termed c-Extreme (corner of H'a(S)) in S, if there exists a D(c, 1/)
such that s lies on its boundary and contains all other points of S (see Fig. 1).

Thus the set of a-Extremes is defined by

Ea(S) -{s E S I 3c E C,(S): s E O(c,//,I)} (6)

where aX is the boundary of S.

As in the limit case of infinite radius (i.e. 1/k close to 0) resp. of radius = R (k = 0) the
generalized spiral disc segment becomes a half plane resp. a circle of radius R, this defi-
nition includes the definition of the convex Hull a(S) resp. of the at-Hull "Wa(S) as well.

2.2 Defining the a-Hull in R2

To represent a log spiral r = Rek( defined in the polar plane (R x wp) an equivalent for the
x/y-plane (R x R) has to be found. The best suited equivalent seems to be one formulated
in terms of affine transformations. In addition, this representation will relate log spirals
and orbits (lying on the log spirals) which union forms an IFS and where the generating
transformations of the largest of these orbits are the IFS-Codes.

Theorem 1 - Log spiral equivalent - A log spiral r = Rekp can be represented by a
continuos function of powers of an afline transformation (o.

RekqP =_ )n = R0(oc) S(Cxn, Cyn) R0(-o) Ro(n(_1P)),

where n R, a E [-;t, 7t), 13 E [-x, 7t) and 1•0

Lemma 1 Each affine transformation can be represented by a symmetric matrix and a
rotation matrix.

(r cos +3s sin/p s cosfi- rsin3wit b-c

( scos/3+tsinp tcosl3-ssinj3) a+d

a2 +b2 +ad-be c2 +d2 +ad-bc ac-bd,= t- and s-
4(a+d)2 +(c-b)2 V(a+d)2 +(c-b)2  4(a+d)2 +(c-b)2

Proof of Lemma 1: in 3

Lemma 2 Each symmetric matrix can be represented by a rotation a, a scaling matrix
and a rotation -a.
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with the eigenvalues c I r+ t+ (rt) + 4s' c= r+t'- r-t) +4s
2 2

and xt = arcian Cx rthe angle of the eigenvector 6, (jx S r1)

Proof of Lemma 2: in3I

Lemma 3 Each affine transformation Co maps a point -:Z E Rek1P again to a point -R, Rek

V~o E R212 and 5ý E Rek(P (o - = 34, and 34, E Rek"P

Proof of Lemma 3:
karetanX

r Re(P resp. Vx`+y 2 =Re

x =r cosqp RekPcos~p and y =r sinqp = Re~sin(p

(x~) =(Re k~cq,, CO(ckacosg+bsingi'

Y) K ek, sing ) K ccosq,+dsinq,)

(parctan-1 arctan acspbi Pand
x ccosq+dsinq)

r= VX2 7 = ~Rek~p(acos g+ bsing,)' ±(ccosgp+dsingq) 2

Rek'PV(acos q+bsin T)
2 + (ccos q,+dsinT)2 = Rekwe acos,,,bsin, fek

VR 2 (acosgqbsin T)
2 +R 2 (ccosg+dsinqg)2 = Re acos~-p-bsinp

v I I - - - - -

X2 y artan~y-= arctan.Ž1
Rx x

Lemma 4 A power n E G of an affine trainsformation maps V E Rek(P again to 3R. e Rek(P.

V(ne R2x2 and VT E Re4' : )n 3.4g and 'K E Rek1P where n EG

Proof of Lemma 4:
Lemma 3 holds for each point on the log spiral Rek(P
I.e. also for w-k and for w2V and so on ... until o3)nY resp. also for (j)-, (,-2,..., ,-n

Corollary I Each power of an affine transformation can be represented as follows.

(,n = (a b~n =R.0(cz)S(c X n, c~n)R 0 (-oa)R 0(n(-i3))

x rccsacsin2 a c- c') cosa sin a'

K(c'-c')cosasina C, cos 2 acsI naJR((3)
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Proof of Corollary 1:
Because of Lemma 4, Lemma 1 can be also defined for n e G(:

,n= eRO(.-OJI where xV p s

Sn = (TRo(_P)) = MnRo(_3)n = Tn Ro(n(-_3)) =

R0 (ca) S(cx, cy) Ro(-ct)R 0(ox) S(c, cy) Ro(--c)Ro(a) ... S(c, cy) R(-a)Ro(n(-13)) =

R0 (ox) S(cx, cy) Ro(0) S(cx, cy) R0 (0) ... S(c, cy) Ro(-a)Ro(n(-j3)) =
R0 (aC) S(cx, CY)n Ro(-c)Ro(n(ax+1)) = Ro(c) S(cxn, cyn) R0 (-ca) Ro(n(-P))

Corollary 2 Lemma 4 can also be defined for powers n e R instead of n e G.
V en E R2x2 and 3ý e Rek(P: Con = x9 and 51 e Rek(P where n E R

Proof of Corollary 2:
Lemma 4 also holds for n e R, ifon is represented according to Corollary 1, since powers
n e R not applicable to o are now defined for cx and c y (i.e. n is no more restricted to G)

Summary (Proof of Theorem 1)
Lemma 4 - using Lemma 3 - shows that on (n e G) generates point sequences on log
spirals (the so-called orbits). Corollary 2 points out that for n e R the orbits of 0 form
log spirals. Corollary 1 defines - by means of Lemma 1 and Lemma 2 - a representation
of on = Ro(a) S(cxn, cYn) Ro(_a) Ro(n(-O)) which can be used to calculate on in R x R for
n e R, what concludes the chain of the proof for Theorem 1.

Definition of the a-Hull in R2

Let D*(f, on) be a spiral disk Upi with fixed point f, bounded by on with 0 _< n _ 2mre/p,
i

m e N and radius [On(s-f)I, where pi e R x R and d(f, pi) -< IOn(s-f)I, s e R x R.

{ D*(f,o-n)C n<0 (7)
Then D'(f'on)= D*(f,on) n>0(7)

denotes a generalized spiral disk in R2.
The generalized spiral disc segments described by means of log spirals in R x (p as in (2)
can now be defined using a continuos function of powers of affine transformations in R2:

D(f, on) = D(f, o,1 )n D'(f,R0 ( 9/4)o)-n) r• D'(f,Ro( r/2)S(-1,1)o)') (8)

where on = Ro(a)S(cxn, c yn)Ro(-a)Ro(n(-O) and 0•_ c, < 1, 0 _cy < 1, -I _< ct < 7t, -7 _< 1P < 7t
Note: for negative a and 0 one will get a spiral disk segment reflected by the x-axis

Which - by adapting the definition (3) of the set of fixed points Ca(S) to R x R - leads to
the definition of the intersection of generalized spiral disk segments Ma(X) resp. the ar-
Hull in R x R instead of R x (p in (4) resp. (5)

RxR X=O
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This leads to additional special cases for the a-Hull defined in R2 •

If c, = c y in Ro(c)S(cxn, cyn)Ro(-a)R 0 (n(-I3)
= D(f, &On) is bounded by 2 straight lines forming an angle of 7/4
Ifcx c Cy anda• = 0 in Ro(cc) S(cxn, cyn) Ro(-c) Ro(n(-P))
= D(f, oan) is bounded by 3 exponential parabolas.

Both shapes are necessary to find all orbits (also those laying on non spiral like curves)
by which an IFS is bound.

2.3 Calculating Orbits using the a-Hull in R2

Calculation of Orbit Generating Transformations

Lemma 5 The curvature proportion p of on - RekP is defined by a k independent of P3

Von =- RekP with p = R/r: k. ln(=cos2 a+cysin2 a)
2 arctan (cx - Cy) sina•cosa•

cx cos2 a+ Cy sin 2 a

Proof of Lemma 5 (cf. Proof of Lemma 3)
r )(X) = (Cn CO2 a n • n2 a Cn _n) •O a sn

Using~ (rk s'C,' = (ccsxcsn a (-c) sI(a' (X" of Corollary I
S~~ ~ xn x COS C•C~ n ((x-yCOSI nSln2 x

S t -Cy)COSasina cycos a+Cx~m )• ~ky)
for the substitution of x and y resp. r and (p in the definition of log spirals:

k aram.G cosq -d sin (p

R j(acos p+bsin q)2 +(ccos p+dsin q)2 = Re acos+bsinp leads to

2karetan (C -cy)sinacosoa

(Cx+CyCOS2a) 2 + ((c--cy)sinacosa) 2 = e c'o°o+cYsm• for (p = 0

=:> 2karcta_ (C -cy)sinacos = l( '222a
CxCOS a+cysin 2 a n

Since for fixed a (e.g. tana! 1) different values of cx and cy form log spirals Rek1 P with
arbitrary k (different in p) k resp. 1/k can be represented in dependency of cx and Cy:

(c~cI 1n(Cx +CY)

k in(• resp. k (for 1/k cx,cy turn into 4c and /y !)
2 arctanCx-Cy 2 artan Cy

Now (A) the nominator resp. (B) the denominator of the above equations for k and 1/k

can be equated to -1i resp. -- " to calculate cx and cy.
2(k+l) 2(k+l)

-kn -k-'.

(A) => c2x+c2y = 2e 2(k+l) for k and cx+cy = 2e2(k-'±) for k-1
(B) = cx-cy = -(cx+c)tan " for k and Fc, -j -y = -(FC- + F-, )tan ' for k-I

Y4(k+1) 4(kl+1)
This leads to:
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4( k2_ 2 2(k+) 24(k+l)

c 2 e 2 () k 4( and c C fork
(1±tan 2 - (+ taflkhr)

-IC'i J - +I) 4(ki 1 +t 1)2 2 (10)
Ik-n 1tan • -k- l+ tan 7

-C -e 2 (k-÷ + )1+"a2 I and VCy = e2(-÷ for k"
l~tan2 4(k' + 1) a(+ ta 4(k-' + 1)f

Note: Now it obvious why k and I/k is treated differently, because otherwise at least one
of the resulting cx or cy can become greater than one in some cases.

The representation of an orbit op by a continuos function of n (Theorem 1) allows to
form the a-Hull for an attractor A paramertized only by cx and cy and a fixed a (because
in that case an arbitrary 1 leads to equal curved a-Hulls according to Lemma 5). That is,
to find an orbit generating transformation o), where a maximal number of discrete bound-
ary points of A lie on the orbit (on (for n E G) forming the edge of a a-Hull (for n E R).

Now generating transformations (os of orbits can be calculated using the equivalent
representation of a a-Hull in R2 if a a-Hull is found, where at least four boundary points
of A pl, P2, P3, P4 lay on one of the circumscribed spiral segments S with the fixed point
f, forming the edge of this (best fitting) hull.

Thus, Vpi i c {1,2,3,41: Pi E (on # pi e R0 (/4)o'n 0 p1 e R0(t/2)S(-l,1)CDI and (on
forms the edge of the a-Hull.

The cx, cy, a and 13 - for the log spiral equivalent (Theorem 1) - can be calculated from
Ws by using the representation o=xvRo(-fP) and T=Ro(c) S(cx, cy)Ro(-a) (Lemma l and 2).

Optimizing the orbit generating transformations (OS

WS = Ro(a)S(cxn, cyn)R 0(-a)R0(n(-P) can now be optimized in the following way:
Since 13 can also be calculated as P3k=Z(pkfR0(cck) S(c1 ,'c',y) R0(-_a)(Pk+d)) and k=1,2,3

=> a new 13 P (=1+132+133)/3 can be obtained
Now a new cx, cy and a is recalculated using 13k to compute Wik:

Scx = (CIx+C 2x+c3x)/3, Cy = (Cly+C2y+C3y)/3 and a = (a 1+a 2+(x3)/3

rk + tk+ J(rk -tk)
2

+ 4s• _ rk +tk - J(rk-tk) +
4
s k •Ckx - rkwhereck= 2 'Cky 2 andak=arctan sk

for xVk =SR(Pk = ' s) = RO(Ck) S(ckx, cky) R0(-ak) and k as in Lemma 2for gk =c~s~ ('1k) tk

Reflection transformations (IFS-Codes) - Either cx or cy is negative
If two best fitting a-Hulls are found which are formed by the log spirals

0 1
2n (pl) = R0 (a) S(cx2n ,cy2n) R0(-a) Ro(2n(-13)) or

0)22n+1 (p'I) = 110(a) S(cX 2n+l,c y2n+') Ro('a) Ro(-0(2n+l))

for n e NO resp. 1/n e N and pl, p'1 ER2, one affine reflective map can be derived:
0)12 =Ro()S(-cx,cy)Ro(-a)R 0 (-1) resp. (012=Ro(oa)S(Cx,-cy)Ro(-ot)Ro(-1),

where cx<0 resp. cy<0, ifR0 (y)(o1 n(pa)=o 2n(p'l) resp. R-7y)0 1n(p 1) =2n(p'l) for yŽ0.
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2.4 How to calculate IFS-Codes

Deriving the IFS-Codes from boundary orbits

Form larger and larger curved ar-Hulls, where the cx and cy are computed according to
Lemma 5 by using smaller and smaller k resp. 1/k (for Re P in the log spiral equivalent
of Theorem 1) for a fixed a (Fig. 2).

Each time you get a best fitting hull (at least four boundary points of an attractor A lie
on the edge of the ar-Hull) the os - generating that orbit defined by these 4 points - is one
IFS-Code of the IFS Wm for a subobject lying outside (i.e. having a part of its boundary
in common with the object) as long as os 4 (9s, (Fig. 2). I.e. Wi+ 1 = Wi u {1Os} for i=
{1, m}, if os os, where mOs, E Wi and os -0s' ifs = 0s, os" where ms" E Wi

largest
Sorbit generated bý

0,c" =>O,= IFS-Codew,

Sa-Hull!W (A)

at-HulWWol (A)

4 x C = minimal set of subobjects

Figure 2. IFS-Code calculation by orbit generating transformations

Besides, this extremely simplifies the classification process (cf. introduction) because
larger orbits are found first and the smaller ones have not to be put into the classes any
more. Using con = Ro(a)S(cxn, c n)R0(-a)R0 (n(-13), several special cases can be apriori
excluded and thus unnecessary classes are not formed:
"* Multiples of other orbits are detected if S(c'x, c' ) = S(c n, c n) n E G resp. if as = as,.
"* The orbit generating transformations ws of the largest orbits of one class is that s's

with the largest 1.
"* Orbits which can be affinely mapped (by inter orbit transformations) onto eachother

will now be detected by those ws having a multiple in P3 - without using an affine
invariant representation 7,8.

Thus in the classification process it is not longer necessary to use classes of orbits but
classes of the orbit generating and inter orbit transformations represented by their log
spiral equivalent (of Theorem 1)

Deriving the IFS-Codes from non boundary orbits
Find all (okJ that for at least one of the spirals SIi (which are formed by each best fitting cr

-Hull of A for the IFS-Codes (oli) circumscribed to A\or-kj (Uo(_k1iA)) holds (okj(Sli) =

i

Ski and Ski a circumscribed spiral to A\ U wk-li (A) and mokj the IFS-Codes for an inner

subobject (i.e. having to less boundary points in common with the object).
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Repeat this process until A\ Uaw, (A) = 0, where {Nki} ={k-li} ~kj} and k ={2,..n}.

Note: Thus the IFS-Codes of attractors with overlapping subobjects can also be calculated.

3 Conclusion

3.1 Summary

In this work is shown how the boundary of a discrete self affine object can be calculated.
This is the proposition to form orbits of boundary points of an object. Subsequently the
orbits have to be classified to calculate the IFS-Codes (affine maps) of a minimal IFS as
generating transformations of the largest of these orbits in each class.

The boundary orbits are found by using a generalized convex hull - the a-Hull. This
hull is formed by the intersection of generalized spiral disk segments (parts of the plane
bounded by 3 log spirals equal in curvature proportions and fixed points) instead of half
planes used for the convex hull. To reduce the calculation costs, an equivalent
representation of spirals (in the polar plane) is defined by powers of affine
transformations (in the x/y-plane).

This representation has the additional advantage, that - by the used affine
transformations - orbits can easily be calculated for the subsequent classification.
Besides, the affine equivalent to log spirals extremely reduces the expense for
comparison and differentiation of the orbits within the classification process.

Further more generating transformations for non boundary orbits can be detected after
removing the subobjects lying outside which have been already calculated. Thus the IFS-
Codes for subobjects having no boundary in common with the object can be computed,
even if the subobjects are overlapping.

3.2 Future Work

Implementation
This is a theoretical work, which forms the basis for the IFS-Code calculation and
classification resp. overcomes the difficulties of their calculation existing so far.
Therefore an implementation will be made together with the elaboration of the classi-
fication part which has to be completed to solve the inverse IFS-Problem as a whole.

But the prototype developed for the last work9 already shows, that in principle this
problem is solvable by using a less general hull similar to the a-Hull and by mapping
orbits of boundary points onto eachother.

Besides, the experience made by the implementation of this prototype showed the
need to have a more general tool (the a-Hull) to calculate and classify the orbits as basis
for the computation of a minimal IFS.

Analysing IFS-attractors under the aspects of the a-Hull

So far the affine equivalent of log spirals (the basis of the a-Hull) has primarily be used
to calculate the boundary of an IFS-object. But it can also be an instrument to categorize
IFS-objects according to the intrinsic properties, such as structure, location and form of
the object parts (subobjects) resp. orbits.

Therefore the correlation between orbits and the parameters of the a-Hull such as
scaling factors (and powers of them) - determining the curvature of the orbits - and the
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two angles - one determining the distance of orbit points and the other determining the
contraction of an orbit - have to be studied in further detail.

The gained knowledge will also improve the IFS-calculation and contribute to a better
adaptation of the a-Hull.

Can the classification process be more improved by the a-Hull ?
Some implications of the parameters of the a-Hull for the classification have been
already analysed in this paper, but there should be more implicit properties of the a-Hull
which can be used to classify the orbits.

Besides the choice of the order - not only in dependency of a decreasing function of
the curvature proportion - by which the a-Hulls are formed can influence the
discrimination process of the detected orbits to be classified.

Last but not least the affine equivalent to log spirals can be used - within the
classification - to decide if one matrix can be divided by another resp. for the comparison
of matrices with respect to their fixed points.

Designing a more adequate a-Hull
Based on the present knowledge about orbits of boundary points of IFS-objects, the basic
element of the a-Hull was designed as the intersection of 3 spiral disks equal in
curvature proportion and fixed point. But in praxis it may turn out that more or less log
spirals with different curvature and fixed point will do a better job.

This variations also will change the size of the basic element, what will influence the
number and accuracy of orbits found on the boundary. That is, roughly speaking how
"tight" a-Hulls can be formed.

So far only two types of basic elements have been investigated. An intersection of two
log spiral disks having the same curvature and the same fixed point. But - though
simpler to handle - this leads to basic elements infinite in size, which are not sufficient to
circumscribe an IFS-object in several cases.

Another basic element was formed by two log spiral disks identically curved in
opposite direction and having the same tangent in their two tangent points. This leads to
more consistent (with respect to the definition of hulls) mathematical model of the a-
Hull, but this basic element is convex and using it's complement again leads to less
"tight" a-Hulls, which prevent that the fixed points of orbits to lay on the boundary.

Generalization of the a-Hull
In general each discrete object can be represented by an IFS as long as sufficient many
IFS-Codes are used (in the extreme case one IFS-Code per pixel !). Decomposing an
object in adequate parts will reduce the number of IFS-Codes'0 . So the question is not to
design more and more complex hulls (bounded by highly non linear curves" ), but to use
the a-Hull to find an minimal number of orbits fitting best into the calculated boundary
points. Two possible solutions are outlined below:

One to enlarge the pixel size by an appropriate scale and to fit the orbits into less
boundary points. Another to make the pixels smaller - so that each point becomes a
boundary point and to find all different orbits within this unconnected point set. The
second approach seems to be more complicated (complexity in the point relation), but it
solves the encoding problem in one step, because there are no subobjects lying inside,
anymore.
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